水中アレイ ET 技術の開発

藤原	貢 *	三輪	康弘	* *
Fujiwara Mitsu	ugu	Miwa Y	asuhiro	
岩田 圭	司 ***	沖 花	晴 信	****
Iwata Keiji		Okihana .	Harunobu	

原子力発電所に設置されているタンクは、腐食減肉や孔蝕等の損傷有無について長期計画に基づく定期 的な点検が実施されている。特に放射性物質を含む水を貯蔵するタンクに関しては、水漏えいがそのまま 放射性物質の漏えい事象となることから、他のタンクよりも厳しい点検・管理が行われている。一般的な タンクの点検では、貯蔵されている水を一時的に排水し、作業員がタンク内に直接入って点検を行うが、 IHI グループでは CCD カメラや小型グラインダを搭載できる水中タンク点検ロボット(炉内検査ロボッ ト AIRIS21 から派生したロボット)を使用することで、貯蔵水を排水することなく、タンク内面の目視 検査(以下 VT と称する)を可能にする技術を開発し、既に実用化している。

今回、この点検手法をさらに充実させるため、この水中ロボットに搭載して運用できる、水中アレイ ET(渦流探傷)検査システムおよび、それによる検査手法を新たに開発したので、そのモックアップ試 験結果の一部を紹介する。

キーワード:水中検査、タンク点検、アレイ ET、水中ロボット

1. はじめに

原子力発電所のタンクのうち、IHI グループが 点検工事の受注に注力しているタンクは、主とし て、放射性廃棄物処理系のステンレス鋼で製作さ れた容量 60 m²~4000 m³の円筒形状タンク、容量 300 m²~800 m³の角型ライニング槽等である。こ れらに対する点検ロボットを用いた点検手法(概 要を図1に示す)は、先に述べたように①タン ク貯蔵水の排水が原則不要である、という特徴の 他に、②タンク内面点検用足場が不要である、③ 作業員・点検員がタンク内に長時間立ち入らない ため、被ばくが最小限に留まる、という長所を持っ ているが、検査手法は VT に固定されていた。

今回、水中アレイ ET 技術による検査手法が追加されたことにより、検査場所に対する検査手法の選択、検査方法の組み合わせが可能になった。これにより、検査手法の特徴を生かした、より柔軟な点検工事方法が可能になると予想している。

^{*} 検査事業部 技術部 部長

^{** (}株) IHI 原子力プラント技術部 課長

^{*** (}株 IHI 原子力プラント技術部 課長代理

^{**** (}株) IHI 原子力プラント技術部

水中ロボット本体

図1 水中アレイET検査システム

_ 9 _

装置構成	(1)アレイET探傷器、(2)処理用パソコン、(3)アレイETプローブ		
周波数設定範囲	10kHz~1MHz(通常 100kHz)		
位相設定	0~359度		
適用ETプローブ方式	(1)絶対値型(ABS) (2)自己誘導型自己比較方式(DIF)		
プローブチャンネル数	ABS64ch,DIF32ch(通常 16ch)		
プローブ走査速度	50mm/Sec		
データ表示	(1) C スコープ映像化表示(2) リサージュ波形(アナログ画面表示)		

表1 水中 ET 検査システム基本仕様

図3 モックアップ試験状況

2. 水中アレイ ET 検査システムの構成

アレイ ET 検査システムの構成を図2に示す。 本システムは、主として、水中タンク点検ロボッ ト本体、ロボット制御装置、アレイET検査装置 の3つから構成される。水中ロボットには最大で、 アレイ ET プローブ(基本仕様を表1に示す)を 3基搭載することができ、この場合、幅100 mm の母材部(ET)検査が可能である。また、中央 部のアレイ ET プローブを、従来のCCD カメラ と置き換ることにより、溶接部(VT)と熱影響 部(ET)の同時検査が可能になる。

3. 水中アレイ ET のモックアップ試験

2項で述べたアレイ ET 検査システムについて、 水中における ET 探傷性能の確認、および検査結 果の画面表示確認試験を実施した。その結果を以 下に記す。

3.1 試験方法

モックアップ試験状況を、図3に示す。模擬 タンクのタンク内壁に、図4に示す人工きず入 り試験片(仕様を表2に示す)を取り付け、こ れを実工事での運用形態を模擬した水中ロボット

表2 人工きず仕様

スリットきず	S1 : 幅 0.2mm ×長さ 10 mm×深さ 0.5 mm		
	S5 : 幅 0.2mm ×長さ 10 mm×深さ 0.7 mm		
	S2 : 幅 0.2mm ×長さ 10 mm×深さ 1.0 mm		
	S3 : 幅 0.2mm ×長さ 10 mm×深さ 1.5 mm		
	S4 : 幅 0.2mm ×長さ 10 mm×深さ 2.0 mm		
平底穴	V1 ~ V3:φ 0.3 ×深さ 0.5 mm		
	H3 : φ 1 ×深さ 0.7 mm		
	H2 : φ 1 ×深さ 1.5mm		
	H4 : φ 1 ×深さ 2.0 mm		
	H1:φ 2 ×深さ 0.7 mm		

で検査し、人工きずの検出性について確認を行っ た。

本モックアップ試験では、アレイ ET で検出し たきず信号と人工きずとの関係を確認するため に、アレイ ET プローブで検出する人工きずを VT (CCD カメラ映像)として取得し、アレイ探 傷結果(ET)と CCD カメラ映像結果(VT)の比 較を行った。このため、本試験ではモックアップ 試験専用のアレイ ET ヘッドを使用している。使 用した水中ロボットおよび水中アレイ ET ヘッド の写真を、図5に示す。このアレイ ET プローブ (8ch プローブ内臓)の検査範囲及び、CCD カメ ラの視認範囲は、図6に示すように1個あたり両 者とも40mm幅である。

3.2 試験結果

アレイ ET の探傷結果出力の一例を、図7に示 す。アレイ ET の探傷結果は、パソコンのディス プレーにカラー映像として表示され、V 振幅、H 振幅をそれぞれ探傷面の真上から見たような画像 で表示(C スコープ表示)される。

図8は、アレイ ET による探傷結果と CCD カ メラ映像結果 (VT) を並べて表示したものである。 このうち、アレイ ET での人工きず検出性を、

IIC REVIEW/2009/10. No.42

— 11 —

図 5 水中ロボットおよび水中アレイ ET ヘッド (CCD カメラ)

図7 アレイ ET 探傷結果例

表3に示す。この結果より、アレイ ET の人工き ず検出性能は、目標とした検査速度で、所定の性 能に達していることを確認した。

本試験の結果より得た、アレイ ET の最小きず 検出能力を、**図9**に示す。

4. まとめ

モックアップ試験において、アレイ ET の探傷 性能が目標を達成したこと、またその検査画面 (ディスプレイ画面)が妥当な形で表示できたこ

図 8 アレイ ET および VT 探傷結果の比較

表3 人工きず検出性確認結果

人工きずの種類と寸法			走査速度と検出性	
タイプ	深さ [mm]	直径 [mm]	30mm/ Sec	50mm/ Sec
スリットきず W0.2mm× L10mm	0.5	—	\bigtriangleup	\bigtriangleup
	0.7	—	0	0
	1.0	—	0	0
	1.5	—	0	0
	2.0	—	0	0
平底穴	0.5	0.3	×	×
	0.7	1.0	0	0
	0.7	2.0	0	0
	1.5	1.0	0	0
	2.0	1.0	0	0
○:検出可	△:検出可&否		×:検出否	

○:検出可 △: 検出可&否

とで、水中アレイ ET 技術のシステムの基本性能

を確認することができた。

今後は、実工事での適用に向けて、検出ノイズ

検査事業部 技術部

部長 藤原 貢 TEL. 045-791-3523 FAX. 045-791-3547

(株) IHI 原子カプラント技術部 課長代理 岩田 圭司 TEL. 045-759-2687 FAX. 045-759-2890

(株) IHI 原子カプラント技術部 課長 三輪 康弘 TEL. 045-759-2687 FAX. 045-759-2890

(株) IHI 原子カプラント技術部 沖花 晴信 TEL. 045-759-2687 FAX. 045-759-2890

図9 モックアップ試験におけるアレイ ET 最小きず検出能力

の低減、検出特性および検査速度限界の把握、現 地キャリブレーション要領の確立等のノウハウ蓄 積を進め、早期実用化を目指す予定である。

参考文献

- (1) Harunobu Okihana, Keiji Iwata, Yasuhiro Miwa: "Remote-Controlled surface Inspection Robot for Nuclear Facilities in Underwater Environment", I CONE17, Brussels, Belgium (2009)
- (2)藤原貢、"ETアレイ検査装置の開発"、IIC REVIEW/2003/10.No.30
- (3)(社)日本非破壊検査協会、"渦流探傷試験Ⅲ"、 2003 年版

— 13 —