微小サイズ、微少荷重試験における引張試験

高久 泰弘*

Takaku Yasuhiro

当社は客先の要望に応じて、JIS 規格のみならず JIS 以外の引張試験片や実機製品を用い様々な機械的 特性試験を実施している。

近年、様々な産業の製品でマイクロ化が進み、それに伴い微小サイズの引張試験に対する要望が増して いる。本稿では、当社で実施している微小サイズ、微少荷重の引張試験について紹介する。

キーワード:微小サイズ、微少荷重、引張試験、はんだ、生体モデル

1. はじめに

近年、様々な産業で製品の小型化、高性能化の 進展に従ってマイクロ加工技術が進みつつある が、それに伴い多くの技術課題が浮かび上がって いる。製品を構成する部材の物性評価もその一つ であり、各種材料の機械的特性を評価するに当 たっては、従来の JIS 規格試験では十分とは言え なくなりつつある。つまり微小サイズの部材に対 する試験が求められており、例えば電子デバイス に用いられるはんだ材などでは、直径 0.1 ~ 0.5 mm での強度評価が必要とされている (JIS 規格 において、引張試験の試験片形状はダンベル型、 平行部直径は6mm以上と規定されている)。ま た、生体を工学的に解明し、それを医療や工業技 術に応用することを目指したマイクロマシンの開 発では、生体モデルを構成する様々な材料の局所 的な機械特性を把握することが不可欠となる。し かし、現在の JIS 規格などに基づく評価技術では、 これらのニーズに対して十分な対応ができない。

当社では、JIS 規格外の試験片や実機製品を用 いて様々な機械試験を実施しており、本稿では試 験片サイズが極微小で荷重が数 N 程度の引張試 験について紹介する。使用した材料は直径 0.2 mm の鉛フリーはんだおよび生体の中でも優れた 飛行特性を有するハチの羽根である。

2. 試験方法

2.1 引張試験機

図1に試験機の外観を示す。本試験で使用した引張試験機は、INSTRON 社製万能材料試験機 5582である。本装置は速度精度(設定速度の±0.1%)、荷重精度(ロードセル容量の1/250読み値の±0.5%)が高く、位置制御性(0.06 µm)も良く、 微小サイズの試験片にも対応可能である。

試験片を固定するチャック治具のグリップ部は ゴム製で、試料毎にグリップ力の調整が可能であ る。

図1 試験装置外観

2.2 試験片の固定および試験要領

JIS 規格では微小サイズの試験片形状および寸 法は規定されていない。そのため、弊社で実施し た試験片作成手順を図2に示す。微小試験片の 引張試験では、試験片を引張試験機に取り付ける 際に、試験片が切断されるリスクを低減させる必 要があり、図2に示すように一旦厚紙に固定す ることによりこのリスクを低減させた。まず2つ 折りした台紙に試験片サイズに応じた径の穴を空 け、この穴の径を標点間距離とした。さらに穴の 上に試料を置き、試料端部に瞬間接着剤を塗布し た後、台紙を2つ折りにして試料を固定した。

図3に試験片の試験機への取り付け状況を示 す。前述の試験片を台紙ごと試験機に取り付けた 後、台紙の横を切断して上下を分離し引張試験を 行った。

鉛フリーはんだは、試験機速度を変えて試験を 実施した。試験は各材料につき5回ずつ実施した。

2.3 試験材料

下記の2種類の材料について引張試験を行った。

1) 鉛フリーはんだ

環境保護の観点から従来の鉛入りはんだに替

図2 試験片作成手順

図3 試験片取り付け時写真

わって使用が増えている、鉛フリーはんだ(Sn-0.3Ag-0.5Cu、直径 0.2 mm)を使用した。 2) ハチの羽根

生体材料の代表として、マルハナバチの羽根を 選定した。図4にハチの羽根の外観を示す。ハ チの羽根は翅脈(しみゃく)と膜から構成されて おり、それぞれの部位における局所的な強度を調 べた。試験には全長約10mm、直径約0.2mmの 最も太い前縁翅脈と、全長が約2mm、厚さが約 2μmの羽根端部の膜を使用した。

3. 試験結果および考察

3.1 はんだ

試験結果の一例として、各試験速度における鉛 フリーはんだの伸びと応力の関係を図5、図6、 図7に示す。また表1には各試験速度における 伸び、引張応力、弾性係数をまとめて示す。図5、 図6、図7に示すように、応力と伸びの関係は試 験開始時に線形を描き、最大応力を示した後、曲

図4 試験片作成箇所

線を描き、破断に至る。本試験では、荷重が小さ く装置およびチャック治具の変形が無視できるた め、チャック間距離の変位から試験片の伸びを求 めている。弾性係数は図5、図6、図7の線形部 分に対して、最小二乗法によって傾きを求めるこ とで算出した。

さらに、表1からひずみ速度と引張強さ、伸 びおよび弾性率の関係を求め、図8、図9、図10 に示した。平均引張強さは、ひずみ速度の増加に 伴い増加した。平均伸びは、ひずみ速度の増加に 伴い減少していることが分かった。平均弾性係数 は、ひずみ速度が増加しても値は大きく変わらず、

図 6 はんだ材における伸びと応力の関係 (試験速度:1mm/min)

図 7 はんだ材における伸びと応力の関係 (試験速度:10mm/min)

誤差範囲内での変化にとどまった。

— 29 —

図8において、各プロットがほぼ直線に乗る ことから引張強さはひずみ速度に依存していると 言える。はんだ材は金属とは異なり、室温におい ても、クリープ変形を示すため、ひずみ速度を変 化させれば、応力はそれに応じて変化する。一般 的にひずみ速度(クリープ速度)と応力の関係を

試験速度 (mm/min)	伸び	引張強さ	弾性係数
	%	MPa	GPa
0.1	56.2 ± 19.7	27.6 ± 0.1	3.2 ± 0.7
1	10.7 ± 3.0	46.1 ± 2.2	2.7 ± 0.4
10	7.6 ± 1.4	54.9 ± 0.8	3.1 ± 0.2

表1 引張試験結果 はんだ材

図8 はんだ材におけるひずみ速度と応力の関係

図9 はんだ材における伸びとひずみ速度の関係

表すのに Norton 則が良く用いられる。

 $\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = \mathbf{A}\boldsymbol{\sigma}^{\mathrm{n}} \tag{1}$

ここで $\frac{d\varepsilon}{dt}$ はひずみ速度(クリープ速度)、A は 材料定数、 σ は応力、n は応力指数である。図8

図 10 はんだ材における弾性率とひずみ速度の関係

における直線の勾配は式(1)における応力指数 nにあたり、材料により異なる値を示す。図8の 試験条件における応力指数は約6であった。

3.2 ハチの翅

代表例として、翅脈と膜における伸びと応力の 関係を図11、図12に示す。翅脈と膜における全 試料の結果を図13、図14、図15に示す。また 翅脈と膜の破断面の画像を図16、図17にそれぞ れ示す。破断した試験片の断面積計測は、走査型 電子顕微鏡(SEM)を用いて得られた破断面の画 像から算出した。一方、膜の破断面積については、 図17から計測した膜厚の値と膜長さの積により 算出した。

翅脈における応力と伸びの関係は図11に示す ように、試験開始時に線形を描き、最大応力を示 した後、破断した。一方、膜の応力と伸びの関係 は図12に示すように、始め線形を描くが、応力 が46MPa近傍で一旦荷重低下し、その後また直 線を描いた後、破断する。一旦荷重低下するのは、 膜の一部が破断したためである。これは試料形状 が不均一であるために、力が均等に付加されない

ことが一因と考える。

図13、図14、図15より、引張強さ、伸びお よび弾性率の値は試料によって2倍、3倍と大き くばらつくが、平均値では翅脈と膜の引張強さ、 伸びおよび弾性係数は近い値を示した。本試験で は前縁翅脈と羽根端部の膜を代表試料として試験 したが、今回の結果から翅全体に渡って生体的に は同じ材質であると考えられる。

図 13 前縁翅脈と膜における引張強さの比較

4. まとめ

以上、紹介した手法により、微小サイズ(マイ クロサイズ)、微少荷重の引張試験が可能である。 本試験では、試験片を厚紙製の保持材に固定する ことで試験片の脱落を防止したが、試験片の種類 や大きさに合わせた保持材の形状を設計していく ことも、データの再現性や信頼性を高めるために は必要である。また試験片サイズ、微少荷重に起

— 31 —

図 15 前縁翅脈と膜における弾性率の比較

図 16 試験後の前縁翅脈断面写真

因するデータのばらつきの大きさ、JIS 規格の試 験との整合性など様々な課題が残されており、今 後も試験方法の改善に取り組みながら、試験の技 術と精度を高める必要がある。

5. 謝辞

本報告の中で、ハチの羽根に関する試験は日本 文理大学、永井助教との共同研究によるものであ り、試験実施にあたり、試料提供や試験方法など 多大なるご指導を頂きました。ここに心より感謝 します。

図 17 試験後の膜断面写真

参考文献

- (1)日本規格協会: JIS Z 3198 鉛フリーはんだ試 験方法、2008
- (2)日本材料学会:鉛系および非鉛系はんだのク リープおよびクリープ疲労試験法標準、
 2004、pp.4~5
- (3) 増沢 隆久:マイクロ化の流れ、生産研究 58<巻2号、2006、pp.81~82
- (4) 苅谷 義治:はんだ材料の非線形特性、エスペック技術情報 No.50、2007、pp.15~27

計測事業部 材料試験部 高久 泰弘 TEL. 045-791-3519 FAX. 045-791-3542