FBG センサ、ひずみゲージ、および加速度ピックアップ による片持ち梁の振動計測性能の比較

福本伸太郎 *1 中島 富男 *2

Fukumoto Shintaro

Nakajima Tomio

アルミ合金製片持ち梁を用いて、FBG センサ、ひずみゲージ、および加速度ピックアップの振動計測 性能の比較を行った。固定端直近の振動に着目することにより、応力や固有振動数の評価が容易となる。 その結果、FBG センサは、ひずみゲージや加速度ピックアップの応答周波数帯域以上の振動モードまで、 計測が可能であることがわかった。

キーワード:FBG センサ、ひずみ計測、振動計測、光ファイバセンサ、同時計測

1. はじめに

近年、光ファイバセンサの1つであるFBGセン サが、土木建築分野や航空宇宙分野まで広く利用 されている。FBGセンサは、温度変化とひずみの 両方の計測ができる。構造物に適用する場合、ひ ずみセンサとして使用されることが多い。また、 FBGセンサの機械的性質を考慮すると、振動や衝 撃の計測も可能であることが報告されている⁽¹⁾。

一般的に、梁構造物では、外力が加わると、固 定端部が最大応力の発生箇所となり、破壊の起点 となる。その箇所において、ひずみと加速度を同 時に計測することで、構造物の健全性評価が可能 になると考えられる。また一般的に、計測時には、 使用環境や他の機器による電気的な影響に注意し なければならない。ひずみゲージや加速度ピック アップでは、電気的な影響を受けやすく、振動波 形のノイズを除去するフィルタ(ローパス、およ びハイパスフィルタ)を使用する。そのため、計 測可能な周波数範囲が限定される。一方、FBG センサは、光を用いて計測するので、電磁誘導によるノイズを受けず、フィルタも必要ない。そのため、計測可能な周波数範囲が限定されず、広範囲の計測が可能と考えられる。

以上を踏まえ、本研究では、片持ち梁固定端直 近の振動に着目し、FBG センサ、ひずみゲージ、 および加速度ピックアップの計測性能の比較をし た。さらに FEM (有限要素法) による固有値解 析結果との比較をした。

2. FBG センサの特徴

まず、FBG センサの原理について説明する。 図1にFBG センサの構造図を示す。FBG センサ とはファイバ・ブラッグ・グレーティング(Fiber Bragg Grating)の略称であり、本センサは電気抵 抗式ひずみゲージと比較し、電気的影響を受けな い、防爆性を有する、ひずみ感度が高い、1本の 光ファイバで複数点の計測ができる、といった特

^{*1:}研究開発センター 研究開発グループ

^{*2:}総務部 課長

長を持つ。FBG センサは、光ファイバのコア内 にブラッグ格子と呼ばれる回折格子を形成し、特 定の波長のみを反射する機能を持たせた光ファイ バ型デバイスである。FBG によって反射した波 長 λ_{s} は、式(1)で表せる。

 $\lambda_{B} = 2n_{e}\Lambda$

ここで、n_eは光ファイバの屈折率、Aは回折格 子の周期である。式(1)を満たす波長で強い反 射が生じ、それ以外の波長は透過する。この反射 した波長はブラッグ波長と呼ばれる。

(1)

図2にASE 光源(増幅自然光源)およびFBG センサの透過光スペクトルを、図3にFBGセン サの反射光スペクトルを示す。図2、図3より、 透過光は1550 nm 以外の波長スペクトルを、反射 光は1550 nm のみの波長スペクトルを示している ことがわかる。

ブラッグ波長 λ₈ は、ひずみ、および温度に応 答して変化する。図4および図5に、FBGのひ ずみと温度をそれぞれ独立に変化させたときのブ ラッグ波長変化を示す。それぞれ直線性を示して

— 47 —

おり、ひずみ、および温度の計測が可能となる。 図4から求めたひずみ感度は1.24 pm/µε、図5か ら求めた温度感度は約10 pm/℃である。各図にお ける直線の傾きが感度を表す。これらの値は文 献⁽²⁾で示されているものと同等の結果である。

3. 試験内容

3.1 試験概要

片持ち梁を用いて、FBG センサ、ひずみゲージ、 および加速度ピックアップによる固定端直近の振 動計測性能の比較を行った。なお、衝撃印加は、 ハンマリングショックによるものである。

3.2 試験片

本試験では、試験片①、および試験片②の2種 類を使用した。試験片①の寸法は長さ165 mm、 幅70 mm、厚さ4 mm、試験片②は長さ400 mm、 幅75 mm、厚さ4 mm であり、材質はともにアル ミ合金(AL7075-T6)である。

図6 試験片①のセットアップ図

3.3 試験セットアップ

各試験片に FBG センサ、ひずみゲージ、および 加速度ピックアップを貼り付けた。図6に試験片 (1)、図7に試験片(2)のセットアップ図を示す。 験片①においては Point 1、2 に FBG センサ、ひず みゲージ、および加速度ピックアップを、試験片 ②においては Point 1、2、3 に FBG センサ、および ひずみゲージを配置した。今回の試験では、固定 端直近以外の場所での固有振動数を算出し、各値 に差がないかを確認した。試験片①において、ひ ずみゲージには KFG-5-120-C1-23(株式会社共和電 業)、加速度ピックアップには2222C(ENDEVCO社) を使用した。また試験片②において使用した加速 度ピックアップは、AS-50B(共和電業)である。 なお、ひずみゲージは、試験片①で使用したもの と同じである。FBG センサについては、1本の光ファ イバで複数点の計測ができるという特徴を生かし、 試験片①では2点の計測を、試験片②では3点の 計測を1本の光ファイバで行った。図8に、試験

図7 試験片②のセットアップ図

図8 試験片②の治具設置状況、および固定端直近の各センサ設置状況

片②の治具設置状況、および固定端直近の各セン サ設置状況を示す。

4. 試験結果

4.1 ひずみ波形と加速度波形

図9に試験片①Point 1、図10に試験片② Point 1における各センサの信号波形を示す。なお、 試験片①における計測では、サンプリング周波数 を500 kHz、試験片②では5000 Hz とした。サン プリング周波数とは、1秒間の計測点数である。 周波数解析時の周波数帯域は、サンプリング周波 数の半分となる。図9より、試験片①における 衝撃印加による振動は、FBG センサ、およびひ ずみゲージではおよそ±100 μεのひずみ、加速度

図 9 試験片① Point 1 における各センサ信号波形

図 11 試験片① Point 1 における各センサの周波 数解析結果

ピックアップではおよそ 5000 m/s² の加速度で あった。また、図 10 より、試験片②におけるそ れぞれの値は、およそ ±40 $\mu \epsilon$ のひずみ、50 m/s² の加速度であった。これらの結果より、FBG セ ンサでは、ひずみゲージと同等のひずみ計測が可 能であることが確認できた。

4.2 周波数解析結果

図 11 に試験片① Point 1、図 12 に試験片② Point 1 における各センサの周波数解析結果を示 す。図 11 の横軸に示す周波数範囲は 1 Hz ~ 250 kHz、図 12 は 0.1 Hz ~ 2.5 kHz である。なお 図中の各ピークは、曲げ振動による固有振動数を 示している。各図より、FBG センサでは、曲げ1

図 10 試験片② Point 1 における各センサ信号波形

図 12 試験片② Point 1 における各センサの周波 数解析結果

次~6次の固有振動数が確認できる。一方、ひず みゲージでは曲げ1次は確認できるが、それ以降 においては、ノイズとの識別が難しい。加速度ピッ クアップは、図11ではひずみゲージとほぼ同様 であり、図12では曲げ1次も確認できなかった。 これらはノイズ除去のためにフィルタ(ローパス、 およびハイパスフィルタ)を使用したためである。 以上の測定結果より、FBG センサでは、15 Hz ~ 100 kHz の固有振動数を得ることができ、ひずみ ゲージや加速度ピックアップよりも広範囲の振動 計測が可能であることが確認できた。

また、各センサの傾向として、固定端直近以外 の場所での固有振動数も、固定端直近と同じ結果 となった。

5. 固有值解析

FEM (有限要素法)を用いて、固有値解析を実施した。モデルは4節点四辺形要素、最小メッシュは1mmである。試験片①の周波数解析範囲は30kHzまで、試験片②は1kHzまでとした。図13に固有値解析例として、試験片①の曲げ6次のモード図を示す。なお、色の変化は変位分布である。

試験片①に対する FEM 解析モデルと、FBG センサで得られた固有振動数の比較を表1に、試験片②に対する両者の比較を表2に示す。表1 および表2より、FBG センサと FEM 解析の結果 は、曲げ6次までにおいて、誤差が2%未満であっ

図13 試験片①の曲げ6次のモード図

	FEM(Hz)	FBG sensor	
Mode		Frequency spectrum(Hz)	Error(%)
1	118	117	0.85
2	707	704	0.43
3	2033	2024	0.44
4	3940	3924	0.41
5	7409	7404	0.07
6	9770	9733	0.38

表1 試験片①に対する FEM 解析モデルと、

FBG センサで得られた固有振動数比較

表 2 試験片②に対する FEM 解析モデルと、 FBG センサで得られた固有振動数比較

		FBG sensor	
Mode	FEM(Hz)	Frequency spectrum(Hz)	Error(%)
1	15.6	15.7	0.64
2	98.4	98.4	0
3	275	275	0
4	542	539	0.56
5	905	891	1.57
6	1321	1327	0.45

た。これらの結果から、FBG センサによる計測は、 十分信頼性があるといえる。なお、試験片の物性 値から求めた厳密解と FEM 解析の結果は同等で あった。

6. まとめ

本研究において、アルミ合金製片持ち梁を用い て、FBG センサ、ひずみゲージ、および加速度ピッ クアップの振動計測性能の比較をした。その結果、 FBG センサでは、ひずみゲージや加速度ピック アップの応答周波数帯域以上の振動モードまで計 測が可能であることがわかった。

これまで当社では、FBG センサを動的センサ として使用してきたが、長期間計測の需要が高 まってきている。FBG センサ自体は、ガラス製 なので劣化しないが、長期間計測のためには、接 着や養生方法の問題を解決する必要がある。これ らの課題が解決できれば、より広範囲の条件下で FBG センサによる計測が可能となる。

参考文献

- (1) 中島富男、廣瀬尚哉、早川努、荒川敬弘:
 FBG センサによる振動計測の自動車用車輪 台上試験への適用、日本機械学会論文集 80
 巻、816 号、2014
- (2) Othonos, A. and Kalli, K. : Fiber Bragg Grating, Artech House Publishers, 1999, pp.98-99

研究開発センター 研究開発グループ 福本伸太郎 TEL. 045-791-3522 FAX. 045-791-3547

総務部 課長 中島 富男 TEL. 045-791-3513 FAX. 045-791-3539