ファイヤークラック検査装置の開発

本間 一茂 *1	齋藤 規子 *2	庄野 統夫*3
Homma Kazushige	Saito Noriko	Shono Muneo
羽田 雅典 *4	引地 達矢 *5	藤原 貢*6
Haneda Masanori	Hikichi Tatsuya	Fujiwara Mitsugu

石炭焚き火力発電所の炉内の炉壁管に発生するファイヤークラックの検査について、自社製品の渦電流 探傷装置 "Mobile EDDy[®]"を使った技術を紹介する。

本技術では、燃焼灰や付着酸化スケールを除去することなく、ファイヤークラックの検査が可能である。 くわえて、スクリーニングとして検査を行うことで、コストの削減と検査作業の効率化を図ることが可能 である。

キーワード:石炭焚き火力発電所、ファイヤークラック、渦電流探傷試験、Mobile EDDy®

1. はじめに

石炭焚き火力発電所の炉壁管(蒸発管)の炉内側 表面は、高温環境下に襲され「ファイヤークラッ ク」と呼ばれる割れが発生する。

現状、このファイヤークラックの発生状況を確 認するために、目視検査や磁気探傷検査を行って いるが、事前にブラスト処理するなど燃焼灰や付 着酸化スケールを除去する作業が必要であり、コ ストや定期検査の工期の面から改善を求められて いる。

本稿では、燃焼灰や付着酸化スケールを除去す ることはなく表面状態が確認できる、渦電流探傷 試験を使ったファイヤークラック検査技術と装置 の開発を紹介する。なお、検査装置に関しては、自 社製品である渦電流探傷装置"Mobile EDDy[®]"を使 用した⁽¹⁾。

2. ファイヤークラックと検査

2.1 ファイヤークラックとは

JIS B 0126:2018 版「火力発電用語 – ボイラ及び 附属装置」によると、ファイヤークラックは溝状 腐食の慣用語に分類されるもので、エレファント スキンとも呼ばれている。図1に示すように、高 温硫化腐食と疲労との相互作用によって、管の周 方向に多数の溝状の亀裂が生じる現象と定義され ている⁽²⁾。

火力発電所の炉壁管におけるファイヤークラッ クの発生原因は、炉内の燃焼炎の揺らぎによる熱 疲労損傷と考えられており、クラックの内部に硫

*1:検査事業部 第一検査部 計画グループ 部長 *2:株式会社 IHI 資源・エネルギー・環境事業領域 ボイラ SBU 保守技術統括センター 技術サポート部 主査 *3:検査事業部 副事業部長 兼 第一検査部 部長 *4:検査事業部 第一検査部 品質管理グループ 次長 *5:検査事業部 第一検査部 品質管理グループ 課長 *6:検査事業部 技師長

— 17 —

図1 ファイヤークラック例

化物が存在する場合は、高温腐食と疲労が重畳した複合損傷形態になると考えられている⁽³⁾。

2.2 現状の検査と課題

現状の炉壁管のファイヤークラック検査は、目 視検査でファイヤークラックの発生状況を確認し て、その部位を磁気探傷試験で詳細に検査してい る。

しかし、炉壁管の炉内側表面には、粉状もしくは 固形状の石炭の燃焼灰や酸化スケールが付着して おり、表面状態を直接視認することや触診するこ とが難しい。そのため、検査を実施する際は、事前 に表面状態をブラストなどで燃焼灰や付着酸化ス ケールを除去しておく前処理作業が必要となる。

前処理作業は多大な労力と時間を要するため、 検査範囲が広くなるにつれて、コスト面や定期検 査の工期短縮の面から改善を求められる。品質を 維持して、かつ効率的な対応が必要である。

図2 渦電流探傷装置 "Mobile EDDy®"

当社では、燃焼灰や付着酸化スケールを除去す ることなく表面状態を確認するため、渦電流探傷 試験を適用した検査手法を採用してシステム化す べく研究開発を進めた。装置に関しては、図2に示 す自社製品である渦電流探傷装置 "Mobile EDDy[®]" を応用することとし、ソフトおよびハードの両面 から研究開発の結果を反映させる改良をした。

2.3 渦電流探傷試験のスクリーニング検査としての適用

(1) 現状の検査作業の流れ

図3(a)に示すように、炉内側表面を検査する 場合、まず、現状は炉内の全面にブラスト処理し て、スクリーニング検査として目視検査を実施 し、ファイヤークラックの発生状況を確認し、詳 細検査の対象とする部位を特定している。次に ファイヤークラックが発生した部位を磁気探傷試 験で詳細に検査し、状況に応じて研削をしている。

- ①炉内の全面にブラスト処理して燃焼灰や付 着酸化スケールを除去する。
- ②炉内の全面の目視検査をする。
- ③目視検査結果からファイヤークラックの発 生状況を確認し部位を特定し、詳細検査の対 象とする部位を特定する。
- ④特定した部位を磁気探傷試験で詳細検査を する。

(2) 渦電流探傷試験を活用した作業の流れ

渦電流探傷試験の技術では、プローブと被検査 面が離れた状態においても数 mm 程度ならば、被 検査面の状況を確認することができる。そのため 燃焼灰や酸化スケールが付着した炉壁管をその上 からプローブの走査をして、炉内側表面のファイ ヤークラックの発生状況を確認することが可能で ある。

図3(b)に示すように、この手法で炉内全面を検 査するとした場合、まず、スクリーニング検査とし

(b) 渦電流探傷試験を活用した作業(渦電流探傷試験+部分ブラスト処理+磁気探傷試験)

図3 渦電流探傷試験のスクリーニング検査としての適用

て燃焼灰や付着酸化スケールの上からプローブを 走査して、その下にあるファイヤークラックの発 生状況を確認し、詳細検査の対象とする部位を特 定する。次にその部位のみにブラスト処理し、磁 気探傷試験で詳細に検査し、状況に応じて研削や 補修を実施する。

図4に示すように、ブラスト処理作業を削減で きることでコスト面の改善が期待される。さらに、 渦電流探傷試験は、電気信号の数値として結果が 得られることから、定性的な目視検査に比べて個 人差が少なく、定量的な評価が可能である。

- 燃焼灰や付着酸化スケールの上から炉壁管の渦電流探傷試験をする。
- ②渦電流探傷試験結果(数値データ)からファ イヤークラックの発生状況を確認し、詳細検 査の対象とする部位を特定する。
- ③特定した部位にブラスト処理して燃焼灰や 付着酸化スケールを除去する。

④その部位を磁気探傷試験で詳細検査をする。

— 19 —

3. 渦電流探傷試験

3.1 渦電流探傷試験とは

金属などの導電体に時間的に変化する磁束を作 用させると、導電体の表層には渦電流(誘導電流 ともいう)が誘導される。渦電流は、導電体中に 割れなどの不連続があると、その大きさと分布が 変化する。渦電流探傷試験は、この渦電流の変化 を利用してきずの検出を行う手法である。図5に 示すように、試験体表面にクラックなどの"きず" がない場合には、図5(a)に示すように渦電流は 同心円上に流れ、試験体表面に割れなどの"きず" が存在すると、これを迂回するように渦電流が流 れるため、図5(b)に示すように同心円状ではな く、渦電流が乱れた流れとなる。この渦電流の乱 れを電気信号として検出し、"きず"検出を行って いる。

3.2 試験プローブ

渦電流探傷システムにおいて、システム全体の 感度、きずの方向性による検出性能の差異、分解 能などの大部分の要素が試験プローブの設計で決 定されるといっても過言ではない。また、試験プ ローブは、適用方法、検出方法、使用方法によっ て、図6に示すようにさまざまな形状、タイプが ある。一般的に、管材の外表面の探傷としては、 貫通プローブを用い、内表面探傷としては、内挿 プローブが使われている。また、平板表面の探傷 では、ペンシル型の上置プローブが使われている。 炉壁管に対しては、被検査面が管を壁状に配置し た形状であるため、上置プローブを採用して、ファ イヤークラック検査用のプローブを開発した。

4. ファイヤークラック検査装置の開発

4.1 ファイヤークラック用プローブの開発

火力発電所の炉壁管は強磁性体材料であるた め、通常の渦電流探傷試験用プローブでは、材料 に起因した不均一な磁性の影響を受ける。そのた め、探傷結果波形に磁性ノイズが発生して、S/N 比が劣ることで、きず信号との識別が困難となる ことから、磁性ノイズが少なくかつ炉壁管に適用 可能な形状である上置プローブを開発した。な お、開発に当たり、図7に示すような炉壁管材に 近い磁性体材料の表面に幅0.3mm、表面からの深 さ 0.5mm、1mm、1.5mm、2mm、2.5mm、3mm の 放電加工による模擬クラックを施した試験片(以 下、模擬クラック試験片)を製作し使用した。

4.2 相互誘導形差動方式の上置プローブ試験

一般的に上置プローブの中で、きず検出性能が 高い、図8に示す相互誘導形差動方式の上置プ ローブで特性確認試験をした。

試験条件としては、試験周波数を35~60kHz
 で、それぞれ模擬クラック試験片の深さ1mm きずを渦電流探傷試験の信号のP-P(Peak to Peak)2V
 の感度に設定して、この試験片の各模擬クラック
 を走査して試験した。

結果としては、**図9**に示すようにきず深さが深 くなっても渦電流探傷試験の出力電圧の変化がさ まざまであり、直線性が得られない結果となり、 また、渦電流探傷試験の波形を見ても磁性ノイズ が多く表れていることがわかる。これらの結果か ら、相互誘導形差動方式の上置プローブでは、磁

図6 各種試験プローブ⁽⁴⁾

性ノイズも含めた渦電流を受信することから、磁 性体の探傷には不向きであった。

その後、さまざまな上置プローブを製作して試 験を行った結果、磁性ノイズを軽減できる相互誘 導形単一方式の上置プローブを開発することがで きた。 今回開発した相互誘導形単一方式の上置プロー ブ外観写真を図10に示す。本プローブは、安定 したプローブ走査を考慮し、炉壁管の外表面形状 に合わせたホルダー内にプローブを挿入した形状 とした。

図7 模擬クラック試験片

図8 相互誘導形差動方式プローブと模擬クラック試験片

図9 相互誘導形差動方式プローブと模擬クラック試験片による試験結果

図 10 相互誘導形単一方式プローブと模擬クラック試験片

図11に示すように、模擬クラック試験片を探 傷した結果では、渦電流探傷試験の出力電圧値 は、きず深さが深くなるにしたがって高くなり、 直線性が得られる結果となり、また、渦電流探傷 試験の波形を見ても磁性ノイズがほとんどなく高 い S/N 比が得られた。

4.3 溶射被膜によるきず検出性確認

炉壁管表面には、高温腐食(硫化腐食)からの保 護やエロージョン対策のために溶射被膜施工を 行っている場合が多い。本試験で使用した試験片 (以下、溶射被膜試験片)は、実機炉壁管サンプル 材に人工きずを加工した後、実機で適用している 溶射被膜を施し、溶射被膜上から人工きずの検出 性を確認した。

4.3.1 溶射被膜試験片の製作

溶射被膜試験片の外観写真を図 12 に示す。試 験片は、図 12 (a) に示すように、炉壁抜管サンプ ル材(φ32×t6.3×L155mm 半割れ材)に、深さ

— 23 —

図 11 相互誘導形単一方式プローブと模擬クラック試験片による試験結果

0.2mm、0.3mm、0.5mm、1.0mm、1.5mm、2.0mmの放電加工による人工きずを加工したものを3体製作して、その1体ごとに図12(b)に示すように、実機炉壁管の溶射材であるFI-50(50Cr-50Ni系)の厚みを495µm、669µm、945µmに変えて溶射したものを製作した。

4.3.2 溶射被膜試験片による試験結果

炉壁抜管サンプル材へ人工きずを加工した後に 溶射被膜を施した試験片を用いて、溶射前後で探 傷し、溶射被膜厚さによる影響ときず検出性を確 認した。

その結果、図 13 に示すように、溶射前後とも に最小きず深さである 0.2mm きずを検出するこ

(a) 溶射前の溶射被膜試験片

(b) 溶射後の溶射被膜試験片図 12 溶射被膜試験片

図 13 溶射被膜試験片での渦電流探傷試験結果

とができた。また、図14に示すように、溶射被 膜厚さ495~945µmの範囲では被膜厚さの違いに 態と溶射被膜がある状態を比較すると、出力電圧 対し、渦電流探傷試験の出力電圧の違いがあまり

見受けられなかった。しかし、溶射被膜のない状 が約40~50%低下した。

図 14 溶射膜厚と渦電流探傷試験の出力電圧

この結果より、実機探傷において溶射被膜また は燃焼灰や付着酸化スケール上からの検査を実施 する場合には、基準感度の感度補正が望ましいこ とがわかった。

4.4 検量線による評価方法の検討

4.1節で製作した模擬クラック試験片および4.3節 で製作した溶射被膜試験片を用い、燃焼灰を模擬 した被膜(塗膜)0mm、1mm での試験結果を図15 に示す。この図を見てもわかるように、渦電流探 傷試験の信号出力電圧値ときず深さについて相関 が得られた。

この図を利用した検量線を作成することで、渦 電流探傷試験の出力電圧からきず深さを推定する ことが可能となった。今後は、実機を含め試験 データの蓄積を行い、きず深さ評価の精度向上を 図りたい。

図 15 きず深さと渦電流探傷試験の出力信号

4.5 実機炉壁管の抜管サンプル材による検証試験

図 16 に示す実機炉壁管の抜管サンプル材を用 い、今回開発したファイヤークラック検査用プ ローブにて、ファイヤークラックの検出検証試験 をした。

その結果、図 17 に示すような渦電流探傷試験の 信号が得られ、その最大出力電圧値は、□部に示 した箇所の中で 0.4V であった。また、抜管サンプ ル材に対し磁気探傷試験を実施したところ、図 18 に示す通り渦電流探傷試験にて指示が得られた範囲でファイヤークラックを確認することができた。 さらに、ファイヤークラックの一部分の断面観察 を行い、クラック深さを確認したところ図 19 に示 す通り深さ 0.2mm 程度であることを確認した。

ファイヤークラック検査用プローブでは、深さ 0.2mmのファイヤークラックを検出できる能力が あり、渦電流探傷試験の出力電圧値からクラック 深さを推測できる可能性が得られた。

図 16 抜管サンプル材外観

図 17 抜管サンプル材の渦電流探傷試験結果

(D) 拡大図 図 18 抜管サンプル材の磁気探傷試験結果

図 19 抜管サンプル材の断面写真(深さ 0.2mm)

4.6 ファイヤークラック検査装置の確立

各種試験片ならびに実機炉壁管の抜管サンプル 材を用いた確証試験の結果から、ファイヤークラッ ク検査用プローブの開発とともに、検査装置の開発 ができた。装置本体は、自社製品"Mobile EDDy[®]" を応用する形で進め、探傷作業時の操作性の向上 を図り、図20に示すスクリーニング検査を目的 としたファイヤークラック検査装置を確立するこ とができた。以下に本装置の基本仕様を挙げる。

- (1) 渦電流探傷装置(Mobile EDDy[®])
- ①寸法:幅120×奥行220×厚み37mm
- ②重量:約750g(乾電池含む)
- ③電源:単3乾電池6本(連続6hr使用可能)

- ④プローブ走査速度:最大約 1m/ 秒可能
- ※プローブ走査速度による探傷結果波形(波高値)の劣化無し。
- (2) タブレット PC: Windows 版
- ※探傷波形デジタルデータ保存可能
- ※渦電流探傷装置とタブレット PC は有線また は無線で接続可能
- (3) プローブ:ファイヤークラック専用プローブ (自社製)

(4) 探傷結果表示出力機能

Window 版ソフトのため、探傷結果マップなど、拡張性のある表示、帳票作成が可能 (図 21参照)

図 20 Mobile EDDy[®] 装置写真

図 21 探傷結果マップ例

5. 実機炉壁管への適用に向けた取り組み

実機では設備や使用燃料、運用状況の違いなど から、プラントごとにファイヤークラックの発生 状況は異なっている。渦電流探傷試験は広範囲の スクリーニング検査が可能であるため、ファイ ヤークラックの発生状況把握に向いている手法と 考える。さらに、同じ範囲を継続的に検査するこ とで、ファイヤークラックの進展状況を把握する ことも可能である。プラントごとに、ファイヤー クラックがどの範囲で進行しているのかを把握す ることで、中長期的なメンテナンス計画に反映す ることができる。

実機適用に向けた取り組みとして、装置は前述

のように探傷作業時の操作性向上を主眼に、小型 化や制御ソフトの改良を実施している。これら は、検査期間の短縮につながり、かつ、足場上で の安全作業にも寄与している。また、検査体制の 整備および維持管理も重要であり、引き続き取り 組んでいく。

一方、実機炉壁管は長期間の使用により、ファ イヤークラック以外に、管外表面の腐食減肉が発 生している可能性もある。この減肉による表面形 状の変化を、渦電流探傷試験では信号として検出 する場合がある。今後、さらなるデータの蓄積を 行い、減肉による表面変化とファイヤークラック 部の信号の判別精度をより向上させる。

6. まとめ

炉壁管のファイヤークラックの検査に、渦電流 探傷試験を使用したシステムを紹介した。本シス テムを用いることで、ブラスト処理範囲を削減で き、検査範囲の絞り込みが可能になり、詳細検査 の範囲も削減できる。このことから、従来の検査 に比べて作業効率が高く、コストも低減できると 考える。

今後は、さらに精度向上と効率的な運用を目指 した研究開発を進めるとともに、お客さまや現場 の要望を反映させて、より現場に密接したシステ ムの構築を進める。

最後に、IHI グループの一員として、また、プ ラントメーカーの検査会社として、火力発電所の 検査作業の改善に努める所存である。

参考文献

- (1) 火力分野(第一検査部)の「売りの技術」: IIC REVIEW、No.60、2018/10、pp.7-11
- (2) JIS B 0126:2018:火力発電用語 ボイラ及び
 附属装置、一般財団法人日本規格協会、2018、
 p.15
- (3)株式会社 IHI 検査計測ホームページ:https:// www.iic-hq.co.jp/services/04/18.html
- (4) 一般社団法人日本非破壊検査協会:渦電流探 傷試験Ⅱ、2016、p.73

検査事未部 計画グループ 部長
本間 一戊
TEL. 045-759-2527 FAX. 045-759-2146
検査事業部 副事業部長 兼 第一検査部 部長
庄野 統夫
TEL. 045-759-2527 FAX. 045-759-2146
検査事業部 第一検査部 品質管理グループ 課長
引地 達矢
TEL. 045-759-2527 FAX. 045-759-2146

株式会社 IHI 資源・エネルギー・環境事業領域 ボイラ SBU 保守技術統括センター 技術サポート部 主査 齋藤 規子 TEL 03-6204-7520 FAX. 03-6204-8791 検査事業部 第一検査部 品質管理グループ 次長 羽田 雅典 TEL. 045-759-2527 FAX. 045-759-2146 検査事業部 技師長 藤原 貢 TEL. 045-791-3523

FAX. 045-791-3547