

FMC/TFM の接合部探傷への 適用検討

Omori Seiichi

征一*1 大森

超音波アレイ探触子を利用した詳細探傷が可能な手法として Full Matrix Capture / Total Focusing Method に着目し、微細きず検出への適用の可能性について検討した。SUS304-SUS304 拡散接合試験 体(試験体サイズ 200mm × 200mm × t40mm)に対して深さ 20mm の位置に加工した微小な平底穴 を対象に探傷試験し、φ 0.05mm の平底穴が検出できることがわかった。

キーワード: 水浸法超音波探傷試験、アレイ探触子、FMC/TFM

1. 緒言(はじめに)

水浸法超音波探傷試験(以下、水浸法 UT)の 適用対象は、接合層の未接合・異物検査や CFRP 部材の層間剝離検査が多く、面状きずの検出に 対するニーズが高い。近年、接合技術や造形技 術の進歩から数 10µm 単位の微細な空隙の検出 といった従来 UT 技術では対応が難しい要求が 増えている。従来の水浸法 UT では、このよう な微細な空隙を検出対象とする場合には 50MHz 以上の高周波帯域を発する超音波探触子を利用 することで対応してきた。しかし、超音波の高 周波帯域は低周波帯域に比べ、固体内の伝搬距 離に応じて大きく減衰するため、減衰が大きい 材質や、材厚が大きい製品への適用は困難であっ た。一方で、超音波アレイ探触子を利用した微 細な空隙の検出が可能な手法として Full Matrix Capture / Total Focusing Method (以下、 FMC/TFM) ⁽¹⁾ が知られている。FMC/TFM は広範囲で超音波の焦点を合わせることができ、

その探傷結果は探触子の走査ピッチ以上の解像 度が得られる。

本稿では、水浸法にて厚さ 20mm の平板 2 枚 を拡散接合した試験体に対し 10MHz の探触子を 用いて FMC/TFM を適用し、φ 0.05mm の平底 穴の検出可否について検討した結果を報告する。

探傷試験

2.1 試験方法

本試験では、図1に示す配置で2軸(X-Y)スキャ ナにより探触子を走査し、図2に示すSUS304-SUS304 拡散接合試験体に対して上側から超音波 を入射して接合面のCスコープを取得し、その指 示位置と平底穴の加工位置を比較した。

2.2 試験体(検出対象模擬きず)

試験体は図2に示すように上下2枚のSUS304 板材(板厚 20mm)を拡散接合しており、下の 板材の接合面には、接合前に No.1 から No.4 の

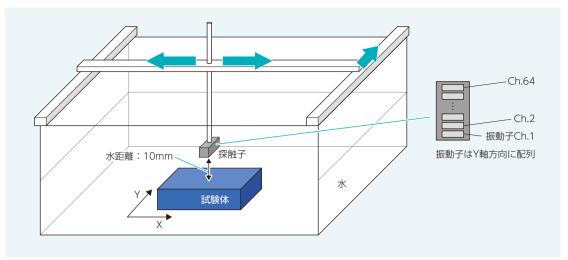
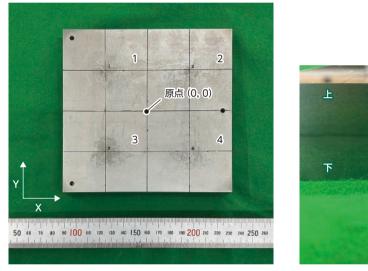



図 1 探傷時の配置および走査方法

接合面

(a) 上側から撮影

(b) 側面から撮影

図 2 SUS304-SUS304 拡散接合試験体の外観

表 1 平底穴の寸法(加工指示値)

平底穴番号	径 [mm]	加工深さ [mm]	X 位置 [mm]	Y 位置 [mm]
1	φ1	1	-37.5	37.5
2	φ 0.5	0.5	37.5	37.5
3	φ 0.1	0.1	-37.5	-37.5
4	φ 0.05	0.05	37.5	-37.5

4か所に平底穴を加工した。平底穴の加工寸法と 加工位置を表1に示す。表1内のX位置、Y位置 はそれぞれ試験体中心を原点とし、図2(a)の 写真右方向を X 軸の正、上方向を Y 軸の正とした。

2.3 使用機器と設定

アレイ探触子は、周波数 10MHz、素子数 64、 素子ピッチ 0.3mm のリニアアレイ探触子を、探 傷器は、64素子を使った FMC/TFM が可能な フェーズドアレイ探傷器を使用した。また、探傷 条件を表2に示す。

2.4 探傷結果

FMC/TFM の探傷結果を**図3**に示す。**図3**内 の破線で示すように 4 箇所の平底穴の指示が確 認できた。4箇所以外にも高い値の指示(黄色矢 印で示す。)が表れたが、図4に示す一振動子型

表 2 探傷条件の設定 (FMC/TFM法)

項目	設定		
送信電圧	160Vpp		
周波数フィルタ	バンドパス 10MHz		
音速設定	5,730m/s		
探傷感度	4 の平底穴を 80%		
探傷範囲	200mm × 200mm		
探傷ピッチ	0.5mm × 1mm		
取得解像度	0.5mm × 0.06mm		

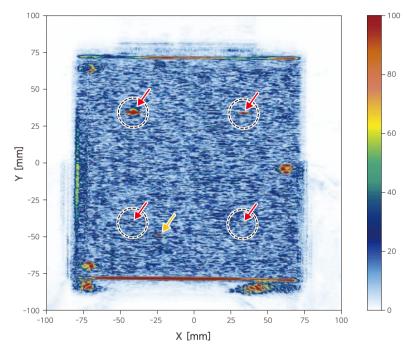


図3 FMC/TFM 探傷結果 (リニアアレイ探触子)

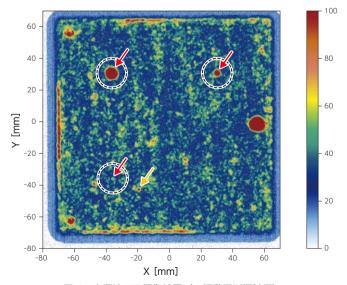


図 4 水浸法 UT 探傷結果 (一振動子型探触子)

表 3 検出した各指示の座標と平底穴加工位置の対比

指示座標 [A]			加工位置 [B]			差 [A]-[B]	
指示番号	X 座標 [mm]	Y 座標 [mm]	想定される反射源 (表 1 の番号)	X 位置 [mm]	Y 位置 [mm]	X 位置 [mm]	Y 位置 [mm]
1	-37.0	38.34	1	-37.5	37.5	0.5	0.84
2	38.0	37.68	2	37.5	37.5	0.5	0.18
3	-37.5	-36.60	3	-37.5	-37.5	0.0	0.9
4	36.5	-37.32	4	37.5	-37.5	-1.0	0.18
5	-19.5	-44.76	該当なし	_	_	_	_

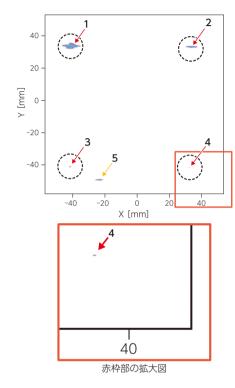


図5 2値化処理した探傷画像と指示の輪郭

探触子を用いた水浸法 UT の探傷結果でも同じ位 置に指示が表れたことから、設計した以外にも何 らかの反射源が存在するものと考える。

2.5 きず指示の検出

図3に示した探傷結果から、画像処理により 各指示の座標を求めた。処理手順としては、指示 の検出レベルを 75% とし、検出レベルをしきい 値として 2 値化処理した探傷画像から指示の輪郭 を抽出し、その輪郭に外接する矩形の中心をきず 指示の座標とした。図5に2値化処理した探傷 画像と指示の輪郭を示す。各指示の座標と平底穴 の加工位置を表3にまとめる。

表3より、指示の座標と加工位置の差異は最 大 1.0mm であり、指示番号 1~4 についてはそ れぞれの穴に由来する指示と考えられる。ただし、 探傷結果には材料ノイズとみられる指示(番号5) も生じていることから、実検査への適用には、断 面観察結果との対比など、さらなる検証を要する。

3. おわりに

微細きず検出への FMC/TFM の、適用の可能 性について検討した。SUS304-SUS304 拡散接 合試験体(試験体サイズ 200mm × 200mm × t40mm) に対して深さ 20mm の位置に加工した 微小な平底穴の検出限界を調査し、FMC/TFM の 探傷結果から ϕ 0.05mm の平底穴を検出できるこ とを確認した。ただし、探傷結果には材料ノイズ とみられる指示も生じており、実探傷への適用に はさらなる検証を要する。

また、FMC/TFM 法の探傷結果では、アレイ振 動子の配列方向のみ分解能が向上するため、一振動 子探触子を用いた手法の結果と比較して方向依存性 が生じた。きずとアレイ振動子の配列方向の相対的 な向きが、きず検出能力に影響することから、今後 は、振動子幅方向へ物理的に焦点をもたせたアレイ 探触子や、マトリクスアレイの適用を検証する。

参考文献

(1) 林 恭平、et al. 「複雑な形状から製品内部をイメージング するアダプティブ超音波探傷技術」、三菱重工技報、Vol.56、 No.1、(2019)

検査事業部 技術部 NDE グループ 大森 征一

TEL 045-759-2120