化学・環境部の「売りの技術」

1. PMI 検査 ~現地材質判定~⁽¹⁾⁽²⁾

海外向けの石油・化学プラントなどで使用され るバルブや配管などの鉄鋼製品を中心に品質保 証・品質管理の観点からプラント建設現場や工場 での PMI(Positive Material Identification:現地材質 判定)検査の需要が高まっている。過去、鉄鉱石 や鉄鋼原材料の価格が高騰したことがあり、その 際には海外の原料や製品が流通したが、その一部 においては、要求規格を満たしていないことがあっ た。現在でも、ユーザーは受入材の材質確認やミ ルシート(検査証明書)通りであることを確認す る目的で PMI 検査が実施されている。

PMI 検査は、組成成分の真値を求める定量分析 ではなく、各成分の測定値が対象試料に規定され ている成分規格に合致しているかを判定するもの である。例えば、SUS304 材(JIS G4303)の PMI 検査では、Ni と Cr が主な検査対象元素となり、その 測定結果が成分規格の範囲内か否か(Ni:8.00~ 10.50%、Cr:18.00~20.00%)を検査することと なる。SUS304L 材の検査であれば、Ni、Cr に加え て C が追加される。

PMI 検査の方法は、蛍光 X 線(XRF)分析法と 発光分光分析法の 2 つが主流となっている。当社 は、この 2 通りの設備(ハンドヘルド XRF 型 PMI 検査装置と発光分光型 PMI 検査装置)を導入して いる(図 1、図 2)。前者は、後者よりも機動性、操 作性に優れているが、C などの軽元素は測定でき ないため、炭素鋼や Low Carbon 鋼の判定(例えば SUS304 と SUS304L の区別)には向かない。一方、 後者は炭素の分析が可能である。それぞれに特徴 があり、ニーズに応じて使い分ける必要がある。

図 1 ハンドヘルド XRF 型 PMI 検査装置

図 2 発光分光型 PMI 検査装置

表1に両者の特徴を比較する。

PMI 検査装置は、試料の平面部に検出部分を密 着させて検査を行う。このため、検査部位の状態 (表面粗さ、溶接部など)、形状(配管、密着でき ない隅肉溶接部など)、測定環境(試料)の気温な どの影響が考えられた。発光分光型の場合、発光

百日	ハンドヘルド型	可搬型	角军言兑	
北日	蛍光X線法	発光分光法		
C(炭素)	分析不可	分析可	決定的な違い	
分析痕	無	有	非破壊	
機動性	1.44kg	30kg(本体+プローブ)	持ち運びが容易	
操作性	較正不要	要較正	取扱容易	
対応鋼種	左記+Ti, Co, Zn	Fe,Ni,Al,Cu	全ての鋼種に対応	
突合せ溶接部	対応可	形状により対応可	試料形状による	
隅肉溶接部	形状により対応可	対応不可	試料形状による	
養生	要放射線管理	不要	フィルムバッチ着用	

表1 ハンドヘルド XRF 型と発光分光型の特徴の比較

不良を防ぐために検査部位の研磨が必要である。 しかし、検査対象が完成品であるなど研磨ができ ない場合がある。このようなケースに対応するた め、ハンドヘルド XRF 型においてステンレス鋼棒 材を供試体として研磨の有無による影響を調査し たところ、Si 以外の元素においては許容差±10%以 内であることを確認している。この他、ハンドヘ ルド XRF 型については、次のようなケースにおい ても、計測が成立することを確認している。

(1) 異なる材質が隣接している試料(溶接部等) は、計測対象部が X 線透過窓の幅(8mm)以上が 必要である。

(2) 計測部分が曲面の試料(配管・針金等)は、 試料を装置の持ち手に対して平行に配置する。

(3)装置と試料が密着できない試料(隅肉溶接部)は、隙間が4mm以下であれば計測可能である。

(4) 測定時の気温は、-10℃~50℃(試料温度は
 気温と同じ)では測定値に影響しない。

PMI 検査は、装置が可搬式で、かつ迅速な検査 が可能であるため、現地材質判定には極めて有効 な手段である。

2. 化学プロセス試験技術

化学プロセスとは、物質がエネルギーを得て化 学変化を起こし、異なる物質に変換するプロセス である。このため、化学プロセス試験は、化学工 業はもちろん、鉄鋼工業やその他多くの分野で、研 究開発や損傷調査に広く利用されている。

化学プロセス試験が行われる目的は、非常に多 岐にわたり、JISに規定されていない特殊な条件下 での実施も多い。したがって、試験方法、装置、条 件は、腐食性や安全性を考慮しつつ、ユーザーの 要求を的確に具現化しなければならない。一般に、 化学反応は温度が高い方が反応速度は大きいた め、試験では電気炉を用いた高温反応が多く行わ れる。また、触媒を用いた化学プロセスも多い。触 媒は、ある特定の化学反応における活性化エネル ギーを低減させるため、より低温で反応速度を大 きくすることができる。当社では、高温加熱時の 発生ガスの計測試験⁽³⁾や腐食性確認試験⁽³⁾、触媒性 能評価試験⁽⁴⁾など、ユーザーの要求に対応した化 学プロセス試験を実施している。ここに実施例の 一端を紹介する。

2.1 高温加熱時の発生ガス計測試験⁽³⁾

試験装置の概要を図3に示す。試験装置は、ガス供給部、試料加熱部、サンプリング部で構成され、目的に応じて供給ガスや管状炉を選定する。 図4は、試料を高温加熱したときの発生ガス(O₂、 SO₂)濃度をベンチトップガスモニタで連続計測し た結果である。

ベンチトップガスモニタは、ポンプを内蔵して

いるが、サンプリングガス量が数 mL/min と小さい ため、小規模試験にも対応可能である。過去には、 CO₂、CO、N₂、He、H₂S なども計測した経験があ る。腐食性ガスが発生する場合は、ベンチトップ ガスモニタの前段に希釈器を設置し、生成ガスを 希釈することで計測可能となる。本法では、多成 分のガスを同時に連続計測できるため、供給ガス と生成ガスを同時に計測することにより、吸脱着 試験にも適用可能である。 また、供給ガスに腐食性ガスを用いることで、試 料の腐食を評価することも可能である。この場合 は、ガスサンプリング部は不要となり、代わりに 試験前後における試料の外観や重量の変化、減肉 量、SEM や EPMA の分析結果から腐食性を評価す ることができる。

2.2 固体から発生した蒸気と供給ガスの反応試験⁽³⁾

図3の装置構成に少し手を加えれば、固体試料 から発生する蒸気を別途供給するガスと反応させ ることも可能である。図5は、固体試料蒸気とガ スを反応させ、冷却後に結晶を回収したときの装 置構成で、図6はそのときに回収された結晶のSEM 画像である。このような試験結果は、例えば異物 が確認されたときなど、その由来、発生メカニズ ムの解明や、対策としてのフィルタの選定などに 対して有益な情報となる。

図 5 固体試料蒸気の供給ガスの反応試験装置の 概要

2.3 触媒性能評価試験装置⁽⁴⁾

前節までは、試験の実施例を概説したが、ここ では、より多彩な機能を付与した触媒性能評価試 験装置について紹介する。図7がその構成図であ る。供給ガスラインを増設し、ガスサンプリング には6方弁を用い、ガスクロマトグラフを検出器 としている。

図6 回収された結晶

3. 石炭焚ボイラにおける燃焼灰の付着挙動⁽⁵⁾

火力発電用石炭焚ボイラでは、亜瀝青炭や褐炭 などの低品位炭の利用拡大が積極的に図られてい る。しかし、これらの炭種を使用する場合、過去 に経験していない灰障害(伝熱管面の汚れ、高温 腐食)による伝熱阻害、発電効率の低下が懸念さ れる。したがって、低品位炭利用においては、こ れらの燃焼灰による障害を予測し、設計や運転・保

図7 触媒性能評価装置の構成

守に反映させることが求められている。このため には、石炭の性状を的確に把握し、石炭の燃焼性、 燃焼灰の溶融・付着性を見極める必要がある。当 社では、石炭の性状分析はもちろん、実機ボイラ 内各所(火炉壁管、加熱器管、再加熱器、など)か ら採取した燃焼付着灰の性状調査を実施し、灰の 付着挙動に関する知見の蓄積に取り組んでいる。

3.1 微粉炭焚ボイラの付着灰性状調査

石炭焚ボイラでは、事前に石炭の性状分析が行 われる。燃焼性を評価するための工業分析、元素 分析、発熱量など、および燃焼灰の挙動を評価す るための灰の組成分析、灰の溶融温度測定⁽⁶⁾であ る。灰の組成分析では、灰中の SiO₂、Al₂O₃、TiO₂、 Fe₂O₃、CaO、MgO、K₂O、Na₂O、SO₃を分析する が、これらの濃度比により、灰の溶融温度が左右 される。一方、灰の溶融温度は、ボイラ内におけ る灰の融点、付着性の目安となる。

(1) 付着灰性状の位置的変化

火炉壁管(熱輻射領域)と加熱器管や再熱器管 (熱対流領域)とでは、異なる付着状態を示した。 前者では、硬い数ミリの灰が均一に付着していた が、後者には針葉状に垂れ流れたようなもろい灰 が数センチの厚さで付着していた。特に、加熱器 管に付着した灰には、色や形態の異なる3層を形 成している箇所も見られた。付着灰中のFe₂O₃含有 率は、熱輻射領域から熱対流領域へとガス流れに 沿って減少し、SiO₂、Al₂O₃はガス流れに沿って増 加傾向を示し、Na₂O、K₂O、CaO、MgOはガス流 れに対する変化は認められなかった(**表**2)。この 傾向は他のボイラでも認められている。

(2) 加熱器管での灰付着挙動

加熱器管に層状の付着灰が確認された(図8)こ とから、層別に組成分析と溶融温度測定を行った ところ、内層部中の Na₂O 含有率は外層部の 10 倍 近く、K₂O では約4倍であった。逆に、CaO、MgO

表2 炉内付着灰の性状

	火炉	過熱器	再熱器	EP 灰		
灰組成(%)						
Si02	32.9	38.7	37.8	54.8		
A1203	16.8	21.0	19.5	24.4		
TiO2	1.76	0.59	1.26	.90		
Fe203	36.0	13.1	7.67	9.16		
Ca0	4.45	10.6	13.4	7.98		
MgO	1.05	1.51	1.59	1.35		
Na20	1.70	1.54	1.40	2.21		
K20	1.22	1.31	1.27	1.36		
S03	4.57	14.6	20.2	1.13		
溶融温度 (℃) (酸化性雰囲気)						
初期変形温度	1065	1095	1125	1200		
軟化温度	1070	1200	1180	1215		
半球温度	1080	1245	1215	1260		
溶流温度	1345	1370	1385	1380		

図8 加熱器管付着灰の層別付着状況

は中、外層に多く検出された(**表**3)。これは、火 炉で蒸気となった Na、Kの硫酸化合物(Na₂SO₄: 融点 884 \mathbb{C} 、K₂SO₄: 融点 1062 \mathbb{C})が熱対流領域で ある過熱器管面で選択的に凝縮・付着し、さらにこ の上に灰が付着・堆積したものと推測される。この 灰付着が確認されたのは、熱対流領域でも一部の 範囲に集中しており、ガス状のアルカリ成分が凝縮 する条件が整ったときに起こるものと推定する。

(0/)		過熱器	
和170 (70)	内層	中層	外層
Si02	18.7	17.7	19.6
A12O3	8.58	10.9	11.9
TiO2	ND	0.53	0.53
Fe2O3	51.6	55.7	43.0
Ca0	2.35	4.99	10.6
MgO	0.50	0.77	1.08
Na2O	5.83	2.65	0.56
K2O	1.59	0.42	0.40
S03	9.51	5.03	12.0

表3 付着灰の層別組成

3.2 スラッギングと灰の焼結性

低品位炭の利用拡大に伴い、従来のスラッギン グ(火炉での灰汚れ)評価手法では評価できない ケースが見られるようになった。そのため、付着 の程度を予測するための灰の焼結試験と評価指標 を提案した。

灰焼結試験

微粉炭をJIS法に準じて815℃で調製した石炭灰 を横型電気炉で加熱処理(ボイラ排ガス温度を模 擬)し、得られた塊状灰の硬さ(膠着度)を測定 (図9に示すラトラ試験機)し、焼結性を評価した。

図10に亜瀝青炭の灰における加熱温度と膠着度 の関係の一例を示す。加熱温度が高いほど膠着度 は大きくなるが、特に1000 ~ 1200℃で急激に変化 した。1050℃では膠着度が小さかった炭種でも、加 熱温度の上昇とともに膠着度が大きくなり硬く付 着することがわかる。実機では火炉内のガス温度 が非常に重要な因子となり、同じ炭種でもガス温 度が上昇すればスラッギングが起こりやすくなる と考える。膠着度は炭種ごとに異なるため、より 膠着度の小さな炭種を選択することでスラッギン グの可能性を低減できると考える。

灰の性状と膠着度の関係性については、図11に 示すように灰の融点と膠着度に相関を見い出して いる(融点が高いと膠着度が小さい)。しかし、幾

1 0.9 0.8 0.7 î 0.6 度 0.5 0.4 0.3 0.2 0.1 1300 1100 1150 1250 1350 1400 1450 1500 温度(℃) 図 11 灰の融点と膠着度の関係

つかの炭種では低融点にもかかわらず膠着度が小 さい炭種(図11の矢印)も確認されており、これ らの炭種を実機ボイラで運用した際には、スラッ ギングが確認されなかった。

灰の膠着度は、実機ボイラでの灰付着挙動を推 測するための有効な手段と考える。灰の融点は、灰 中の塩基性成分 ($Fe_2O_3 + CaO + MgO + Na_2O + K_2O$) と関係があるため、低融点でも膠着度が小さくな

— 45 —

る理由を灰組成面からも検討を重ね、膠着度を用 いた評価法の精度を高めていきたい。

今後、多種の石炭が利用されると考えられること から、事前に石炭の性状、特徴を十分に検討・評価 し、灰付着に起因するトラブルを予測することが、 ボイラの安定的な運用に寄与するものと思われる がその中で、灰の膠着度は重要な指標と考える。

文責

計測事業部 化学·環境部長 佐藤 健治

参考文献

 高橋剛:ハンドヘルド型蛍光X線分析法による PMI 検査、IIC REVIEW、No.50、2013/10、 pp.74-81

- (2) 下薗俊幸、沢本拓也、七里智美、久保薫、高野卓: HHXRF型 PMI 計測値に対する計測環境の影響評価、IIC REVIEW、No.58、2017/10、 pp.27-33
- (3) 則定和志:高温加熱反応試験、IIC REVIEW、 No.47、2012/04、pp.31-36
- (4) 則定和志、茂田潤一:触媒性能評価技術、IIC REVIEW、No.57、2017/04、pp.36-41
- (5) 茂田潤一、知恵賢二郎:石炭焚ボイラにおける燃焼灰の付着挙動、IIC REVIEW、No.55、2016/04、pp.21-29
- (6) 茂田潤一、知恵賢二郎:高温加熱顕微鏡による石炭灰の溶融温度測定技術、IIC REVIEW、
 No.49、2013/04、pp.46-55