サンプリングモアレ法を用いた変位計測システムの導入

宮下 和大^{*1} 倉内 友己^{*2} 郡 亜美^{*2} Miyashita Kazuhiro Kurauchi Yuki Kohri Ami

近年、非接触で変位計測が可能な一手法として、サンプリングモアレ法が注目されている。当社は2018年 度に変位計測装置のサンプリングモアレカメラを導入した。本稿では、サンプリングモアレ法の概要と確 認試験の結果を紹介する。

キーワード:サンプリングモアレ、変位計測、非接触、画像解析、位相解析

1. はじめに

サンプリングモアレ法は、測定対象物に張り付 けた格子ターゲットをカメラで撮影することで変 位を計測する手法である⁽¹⁾。さらに、複数の格子 ターゲットを同時撮影することで、複数点同時に 変位を計測することも可能である。また、従来の 接触式変位計に比べ、計測箇所での計測器の設置 が不要であり、配線作業の簡素化などが可能であ る。本稿では、このサンプリングモアレ法の概要 と確認試験の結果を紹介する。

2. サンプリングモアレ法の概要

今回用いた共和電業社製のサンプリングモアレ カメラ (DSMC-100A) の外観と格子ターゲットを 図1に示す。

サンプリングモアレ法では、撮影した参照格子 (変形前)と変形格子を重ねることで発生するモア レ続を利用して、高精度で変位を測定する手法で ある。モアレ編とは規則正しい繰り返し模様の周 期のずれにより発生する縞模様のことである⁽²⁾。 モアレ縞の例を**図2**に示す。

図1 サンプリングモアレカメラおよび格子ターゲット外観

*1:研究開発センター 研究開発グループ

*2:計測事業部 計測技術部 磯子グループ

サンプリングモアレカメラで撮影した1枚の格 子画像に対して、参照格子のスタート点を変えな がら一定の間引き間隔でダウンサンプリングを行 い、モアレ縞を発生させる。次にモアレ縞間の輝 度補間処理を行い、モアレ縞にグラデーションを かけて波形データとする。そして、取得したモア レ縞の濃淡を波に見立て、モアレ縞を位相解析す ることで変位を求めることができる。そのため、 格子模様の微細な変形をモアレで表現することで 大きな位相差として捉えることができ、格子ター ゲットのピッチの 1/100~1/1000 程度の精度で変 位を計測することが可能である⁽³⁾。また変位の算 出には、撮影した画像をピクセルごとで演算を行 い、格子に相当する部分の平均値を格子ターゲッ トの変位量として出力している。そのため、画像 撮影の際に生じるショットノイズなどの影響を少 なくし、良好な繰り返し精度を有している。サン プリングモアレカメラの基本構成を図3に示す。

サンプリングモアレカメラはカメラ内部での CMOS センサ(光を電気信号に変換)と DSP(デジ タル信号)処理によって画像の高速撮影(最大

図3 サンプリングモアレカメラの基本構成

500fps以上)が可能であり、動的変位の計測にも 適用できる。

3. サンプリングモアレ法の確認試験

サンプリングモアレ法を用いた計測結果の一例 を紹介する。サンプリングモアレ法の分解能は、 格子ターゲットのピッチおよび位相差の計算エリ アの大きさに依存する。実計測においては、主な 誤差要因は、対象と計測器間の温度差による空間 の揺らぎやカメラを据え付けた床面の振動などの 外乱が挙げられる。ここではサンプリングモアレ 法で標準的な図1(b)で示した格子ターゲットを 用いて、変位計測と振動計測した結果を述べる。

3.1 カメラと計測対象の距離と精度の関係

カメラと格子ターゲットの距離を 5m、10m、 30m、60m、100m と変化させ、距離の影響を調査 した。また、計測する時間帯による計測値の影響 を調べるために昼間と夜間で計測した。試験方法 は、格子ターゲットを取り付けた 1 軸ステージを 用い、横方向に 1mm の変位を与えた。サンプリン グ周波数は 15Hz とし、計測値は 3 秒間の平均値 とした。計測に用いた格子ターゲットを図4に、 計測時の状況を図5 に示す。

夜間は周囲が暗く、サンプリングモアレカメラ で格子模様を識別できないため、計測位置から白 色ホロライトを用いて格子ターゲットに照射し た。計測結果を図6に示す。

図4 計測用格子ターゲット(10mm ピッチ)

(a) 昼間計測状況(10m)

(b)夜間計測状況(10m)
図 5 計測状況

図6より、すべてにおいて、格子ピッチの1/100 にあたる0.1mm以下の計測精度が確保されてい ることがわかる。また、それぞれの距離で静止状 態(変位0mm)における計測データのふらつきを 確認するため、サンプリング周波数15Hzで10秒 間計測したときの標準偏差を求めた。結果を表1 に示す。

表1より、格子ターゲットとの距離が長くなる に従い標準偏差が大きくなる傾向が確認できる。 昼間と夜間の違いについては、10m以下の計測条 件では双方に大きな違いが見られなかったもの の、30m以上の計測条件では昼間の方がより標準 偏差が大きくなる結果が得られた。この要因とし ては、昼間は地面が温められ空気の揺らぎが生じ やすく、撮影した像が揺らぐためと考えられる。 また、格子ターゲットまでの距離が長くなるにつ れ空気の揺らぎの影響を大きく受けるため、長距 離ほど標準偏差が大きくなったと予測される。

図6 各計測距離における変位量

	· · · · · · · · · · · · · · · · · · ·	
計測距離(m)	昼間計測時の標準偏差(mm)	夜間計測時の標準偏差(mm)
5	0.004	0.007
10	0.010	0.009
30	0.055	0.029
60	0.146	0.108
100	0.228	0.142

表1 各計測条件おける標準偏差

3.2 格子ターゲットに対する角度の影響

通常、計測対象の正面からターゲットを狙える ような好条件は少なく、計測対象のターゲット面 の正面の方向から角度を持って計測することにな る。ここでは図7に示す加振装置で片持ち築のH 鋼を加振させ、それを対象にカメラ2台による同 時計測を行い、角度が計測精度に及ぼす影響を確 認した。図8に格子ターゲット(10mm ピッチ)と サンプリングモアレカメラの位置関係を示す。

カメラは H 鋼の正面 (カメラ 1) および斜め 30° (カメラ 2) の方向に設置し、変位を計測した。加 振開始時からの変位の比較を図9に示す。

図9より各設置条件において、ピーク値を記録 した時刻が一致しており、2つのカメラ間で同期 が精度よく取られている。また、第一波の変位量 の差異が格子ピッチの1/100である0.1mmに比べ 0.02mmと十分に小さい。これより、計測において 格子ターゲットと格子を撮影するサンプリングモ アレカメラの角度はかならずしも垂直である必要 はないと考えられる。

3.3 格子ターゲットを橋梁ボルト部分とした場合の計測結果

通常、サンプリングモアレ法では、格子ター ゲットを測定対象物に張り付ける必要がある。し かし、橋梁に格子ターゲットを張り付けるには、 足場を組むなど手間や費用がかかってしまう。そ こで、橋梁の中にある規則性を持つ模様を利用し て、格子ターゲットの張り付けなしで変位測定可 能かを検討した。今回は、橋梁の桁部にある規則 正しく並んだボルト集合部に着目し、ボルト集合 部を格子ターゲットとして測定し、精度を確かめ た。

試験方法は、橋梁の桁を模擬したボルト集合部 を取り付けたH鋼の3点曲げとした。H鋼の模式 図を図10に示す。

図7 加振装置外観

図8 格子ターゲットとカメラの位置関係

H 鋼の全長は 6m、支点間距離は 5m である。ボ ルト集合部は、図 10 に示す x=0mm (H 鋼中央)、 x=-1250mm、x=2250mm の位置に 3 カ所取り付け た。また、比較として、10mm ピッチの格子ター ゲットを x=1250mm の位置に 1 カ所取り付けた。

— 59 —

サンプリングモアレ測定の結果を評価するために、 ボルト集合部や格子ターゲットの下に接触式変位 計を取り付けた。図11に3点曲げ試験状況を示す。

ボルト集合部の拡大図を図 12 に示す。本試験 で対象とした六角ボルトは径を 10mm、ボルト間 のピッチを 20mm とした。ボルトの個数は 8×8 個 とした。 H鋼中央に2kN、15kN、30kN を載荷する静的荷 重試験を行った結果を図13に示す。

図 13 から載荷荷重のいずれに対しても、ボル ト集合部のサンプリングモアレ法による計測結果 と接触式変位計の測定結果がよく一致し、両者の 差がボルト間ピッチの 1/100 である 0.2mm 以内に 収まっていることが確認できた。また、ボルトと

図11 3点曲げ試験状況

格子ターゲットの精度にはほとんど差はなかっ た。このことから、ボルト集合部をターゲットと して用いることで、静的な変位が計測可能である ことを確認した。

次に、載荷荷重を 8kN とし、加振周波数 3Hz で 振動させる動的荷重試験を行った。H 鋼中央部で の計測結果を図14に示す。

サンプリングモアレ法および接触式変位計での 図14に示す変位量、周波数がよく一致している ことが確認できた。また、図14の結果を高速フー リエ変換(FFT)解析すると両者の周波数はともに 3.0Hz であり、加振周波数の 3Hz と一致した。こ れらのことからボルト集合部をターゲットとして 用いても、静的な変位だけでなく動的な変位に対 しても計測が可能であることを確認した。

4. おわりに

今回は確認試験における計測結果を紹介した。 サンプリングモアレ法はカメラの撮像範囲であれ ば非接触で複数点の計測が可能であり、今後大型 構造物の変位計測に幅広く適用できることが期待 される。

参考文献

- (1) Fujigaki, Morimoto : Sampling Moire Method for Accurate Small Deformation Distribution Measurement, Experimental Mechanics, Vol.50, No.4, 2010, pp.501-508
- (2) 森本、藤垣、柾谷:サンプリングモアレ法に よる変位・ひずみ分布計測、日本真空学会、 54 卷 1 号、2011、pp.32-38
- (3) 藤垣、原、生駒、村田:列車通過時における 鉄道橋の動的な変位計測へのサンプリングモ アレカメラの適用、実験力学、Vol.12、No.3、 2012, pp.179-184

研究開発センター 研究開発グループ 宮下 和大 TEL. 045-791-3522 FAX. 045-791-3547

計測事業部

磯子グループ 亜美 郡 TEL. 045-759-2085 FAX. 045-759-2119

計測技術部

計測技術部 磯子グループ 倉内 友己 TEL. 045-759-2085 FAX. 045-759-2119

計測事業部